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Elastic Energies in Computer Graphics

3

Dynamic Deformables [Kim, Eberle 2022] Discrete Elastic Rods 
[Bergou et al. 2008]

Analytic Eigensystems [Smith et al. 2019] Normal-Driven Spherical Shape Analogies 
[Liu, Jacobson 2021]

Deformable Solids Cloth & Shells Rods

Surface Parametrization Shape Stylization & Optimization

Progressive Dynamics for Cloth and Shell Animation 
[Zhang et al. 2024]

Second-Order Finite Elements for Deformable Surfaces 
[Le et al. 2023]
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Multiphysics Energies
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Strongly Coupled Simulation of Magnetic Rigid Bodies 
[Westhofen et al. 2024]

Magnetism

Contact Rigid Bodies Multibody Systems

Codimensional Incremental Potential Contact [Li et al. 2021] Intersection-free Rigid Body Dynamics [Ferguson et al. 2021] A Unified Newton Barrier Method for Multibody Dynamics 
[Chen et al. 2022]

Fluids

A Contact Proxy Splitting Method for Lagrangian Solid-Fluid Coupling 
[Xie et al. 2023]

Heating & Wetting

Physical Simulation of Environmentally Induced Thin Shell Deformation 
[Chen et al. 2018]
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Energy-Based Multiphysics Modeling

Unifying mathematical formulation 

• Physical systems modeled by scalar potentials 

• Constraints modeled by barrier potentials or penalties 

Typically 

• …leads to fully implicit, primal formulation  

• …solved as unconstrained optimization problem
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Incremental Potential Contact [Li et al. 2020]
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Outline

1. Mathematical foundations 

2. Physical models and coupling 

3. Related methods (VBD, PD) 

4. Summary: Models & Properties
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• Example: Discretize Equations of Motion with BE 

     discretized as       

• Define  such that  solves EoM 

M··x = ∑
i

fi(x) M
x − xprev − Δtvprev

Δt2
− ∑

i

fi(x) = 0

E(x) ∇E(x) = 0

• Example: Discretize Equations of Motion with BE 

     discretized as       

• Define  such that  solves EoM 

M··x = ∑
i

fi(x) M
x − xprev − Δtvprev

Δt2
− ∑

i

fi(x) = 0

E(x) ∇E(x) = 0

Optimization-Based Time Integration
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E(x) =
1

2Δt2
(x − x̃)⊤M(x − x̃) + ∑

i

ϕi(x) fi(x) = − ∇ϕi(x)where
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• Incremental potential of BE: 

• Minimize to solves balance of forces 

• Physical effects modeled by scalar potentials           with

Optimization-Based Time Integration
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E(x) =
1

2Δt2
(x − x̃)⊤M(x − x̃) + ∑

i

ϕi(x)

min
x

E(x)

fi(x) = − ∇ϕi(x)

ϕi(x)



Multiphysics Simulation Methods in Computer Graphics – EG 2025, London

Minimizing the Incremental Potential

Problems in practice: 

💥 Forces are non-linear: full step  might overshoot actual minimum 

👉 Solution: Line search using  

💥 Indefiniteness: Objective might not be convex everywhere 

👉 Solution: “Projected Newton”, project  to positive semi-definiteness (PSD)

d

E(x)

H(x)
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…if objective is convex

Introduction to Optimization for Simulation 
Honglin Chen 2024

i

min
d

E(xi) + ∇E(xi)⊤d +
1
2

d⊤H(xi) d solved by d = − H(xi)−1 ∇E(xi)min
x

E(x)

Newton’s method: find direction  that minimizes quadratic approximation around   

  

d xi
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Goal: Find step length  such that step  decreases objective 

→ i.e.  

• Halve  until condition satisfied 

• Simplest form of Armijo condition 

• CCD can be incorporated 

α ∈ [0,1] α d

E(xi + αd) < E(xi)

α

Backtracking Line Search
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E

∇E(xi)

xi xi + d

E(xi)

Quadratic 
approximation 
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Outline

1. Mathematical foundations 

2. Physical models and coupling 

3. Related methods (VBD, PD) 

4. Summary: Models & Properties

11



Multiphysics Simulation Methods in Computer Graphics – EG 2025, London

• Continuum-based models: strain energy densities 
→ e.g. Stable Neohookean: ΨSNH =

μ
2

(tr(F⊤F) − 3) − μ(det F − 1) +
λ
2

(det F − 1)2

Elastic Deformations

12

• Naturally described using energies 

• Change in shape → change in internal energy 

• Simple spring-based models 

→ e.g.  Espring =
1
2

k∥xi − xj∥2/l0
Higher-Order Time Integration for Deformable Solids [Löschner et al. 2020]
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Elastic Deformables using FEM

• Discretization with FEM yields energy per element 

→ e.g. for linear elements:  

• Forces:  , stiffness matrix:   

• Minimization solves balance of forces

Estrain(x) =
NEle

∑
i

ViΨ(Fi(x))

f = − ∇Estrain K = −
∂2Estrain

∂x2
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• Continuum-based models: strain energy densities 
→ e.g. Stable Neohookean: ΨSNH =

μ
2

(tr(F⊤F) − 3) − μ(det F − 1) +
λ
2

(det F − 1)2
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Modelling dynamic contact

• Incremental Potential Contact [Li et al. 2020] 

↳ Goal: intersection-free simulations in unconstrained optimization 

• Introduce smoothly clamped barriers: 

 

With contact potential  

• Apply barriers to all triangle-vertex and edge-edge pairs  

• Filtered line search: CCD determines upper bound for step

b(d, ̂d) =
−(d − ̂d)2 ln ( d

̂d ), 0 < d < ̂d

0 d ≥ ̂d

EC(x) = κ∑k∈C
b(dk(x))

k ∈ C
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Incremental Potential Contact [Li et al. 2020]

Incremental Potential Contact [Li et al. 2020]
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Intersection-free dynamic contact
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Intersection-free dynamic contact
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Intersection-free dynamic contact
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Cloth, Shells & Rods

18

Intersection-free contactShell models (examples…)

EDS = ∑e
(θe − θ̄e)2∥ē∥/h̄e

Geometrically motivated

Continuous models
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Rigid Bodies & Affine Bodies

• DOF per rigid body: translation  and rotation vector   

• Inertial term for rotation DOF: 

 

with   

• Non-linear mapping from DOF to vertices 

→ Small time steps or “curved CCD” for intersection-free contact 

• Alternative: Affine Bodies 

→ Body embedded in a single tetrahedron 

→ Use any stiff material model ( )

xi ∈ ℝ3 θi ∈ ℝ3

ER(R(θ)) =
Nrb

∑
i

( 1
2

tr(RiJiRT
i ) − tr(RiJiR̃T

i ))
R̃i = Rprev

i + h ·Rprev
i + h2τiJ−1

i

E > 108Pa
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Multi-Body Systems

• Coupling deformable & rigid bodies with joints and motors 

• Reformulate constraints using penalties and barriers 

→ Equality constraints:   

→ Inequality constraints:  

EEq(x) =
1
2

k(c(x))2

EIneq(x) = κb(c(x))
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Multi-Body Systems
Strongly coupled systems: 

• Rigid bodies for car body and rims 

• Tires as deformable solids 

• Dampened springs and slider 
joints for suspension 

• Connected with axial joints 

• Rotation limits for steering

21
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Dissipative Forces

• We need scalar potentials  such that    

→ Possible for conservative and path-independent forces 

• Adaptations required for dissipative/non-conservative forces:

ϕi(x) fi(x) = − ∇ϕi(x)

22

PlasticityFriction

Intersection-free Rigid Body Dynamics [Ferguson et al. 2021] Energetically Consistent Inelasticity for Optimization Time Integration  
[Li et al. 2020]

Damping

Accurate Dissipative Forces in Optimization Integrators  
[Brown et al. 2018]
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Coupling Magnetic Effects

23

Strongly Coupled Simulation of Magnetic Rigid Bodies [Westhofen et al. 2024]

Emagn = − ∑i
ViMi ⋅ Bext,i

Magnetic Rigid Bodies Magnetoelastic Thin Shells

Emagn = − ∑i
hFiMi ⋅ Bext,i

Simulation and Optimization of Magnetoelastic Thin Shells [Chen et al. 2022]



Multiphysics Simulation Methods in Computer Graphics – EG 2025, London

FEM & SPH Coupling: Contact Proxy Splitting Method
• Fully Lagrangian formulation 

• Models Weakly Compressible SPH using quadratic potentials 

• e.g. incompressibility potential:   

• Contact model: barriers on particle ↔ mesh distances 

Problems of fully implicit formulation:  

• “Connectivity” of SPH particles (neighbors of neighbors) 

• Nonlinearity of barriers and deformables 

Splitting approach: 

1. Solve fluid phase with linearized contact forces 

2. Solve deformables with full contact potential & fluid proxy

EI = ∑i

κI

2
V0 ( ρ0

ρi
− 1)

2
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Projective Dynamics

• Introduces local/global split 

• Local: Non-linear constraint projections 

→ Per constraint, find closest “target positions”   
that satisfy  

• Global: for fixed , minimize BE incremental potential 

 

→ Where  are quadratic functions, pulling the DOF  towards 

pi
Ci (pi) = 0

pi

EPD(x, p) =
1

2Δt2
(x − x̃)⊤M(x − x̃) + ∑

i

di(x, pi)

di(x, pi) x pi

26

 has Constant Hessian → Pre-FactorizeEPD
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Vertex Block Descent

• Uses a block coordinate descent approach 

• Solves local (per-vertex) energies: 

 

• Analytic inversion of local 3x3 Hessians 

• Designed for efficient implementation on GPU 

• Alternative to XPBD, but is a primal method 

• Reduces global energy but does not necessarily converge to its minimum

Ei(x) =
mi

2Δt2
∥xi − x̃i∥2 + ∑

j∈𝒱i

ϕj(x)

27

Energies affecting vertex i
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Summary: Energy-based Models
🌟 Deformable solids, cloth, shells and rods  

👍 Geometrically motivated & continuum-based models 

👍 Material models: isotropic, anisotropic, example-based, data-driven… 

👍 Dynamic frictional contact & intersection-free simulations 

👍 Rigid bodies & multi-body systems 

👍 Other physical phenomena (e.g. magnetics, heating, wetting…) 

🤔 “Accurate” friction and certain plasticity models 

→ Typically needs approximations (e.g. lagging) 

🤔 Fluids & granular media 

→ Typically needs operator splitting, semi-implicit approaches or constrained optimization
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Summary: Properties of Energy-Based Simulation
👍 Simple: in terms of formulation and numerical approach 

👍 Robust convergence: due to line search & second-order derivatives 

🤔 Primal methods: Good for high mass ratios, very large stiffness ratios numerically challenging  

👎 Limited to potentials: no arbitrary dissipative and non-conservative forces 

👉 Solution: Adapted and approximate models (for friction, damping and plasticity)  

👎 High computational cost: problematic for interactive applications 

👉 Solution: Related methods for interactive applications, e.g.: 

• VBD: Vertex Block Descent [Chen et al. 2024] 

• PD: Projective Dynamics [Bouaziz et al. 2014]
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or 

f(x) = − ∇xϕ(x)

fD(v) = − ∇vϕD(v)
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