

Multiphysics Simulation Methods in Computer Graphics

Daniel Holz^{1,2}, Stefan Rhys Jeske³, Fabian Löschner³, Jan Bender³, Yin Yang⁴, Sheldon Andrews²

Outline

- 1. Introduction
- 2. Structure of the Talk Series
- 3. Part I: Constraint-Based Multiphysics Modeling
 - 1. A Unified Modeling Framework
 - 2. Position-Level Formulation
 - 3. Velocity-Level Formulation
- 4. Questions

- Abundance of physics simulation methods
 - Physical materials Ο
 - Physical phenomena Ο
- Multiphysics simulation
 - **Interacting** materials and phenomena Ο
- Applications in many industries
 - Entertainment 0
 - Engineering Ο
 - Training Ο

Snow simulation for the movie Frozen [Stomakhin et al., 2013]

Robotic vacuum cleaner colliding with carpet [Fernandez-Fernandez et al., 2024]

- How to classify multiphysics simulation methods?
 - Domain discretization

- How to classify multiphysics simulation methods?
 - Domain discretization
 - Behavior and interaction modeling

Unified Models

Monolithic modeling frameworks, yielding strong two-way coupling

Coupling Techniques Techniques for two-way coupling of multiple models or discretizations

Multiphysics Simulation Methods in Computer Graphics – EG 2025, London

	Lagrangian Point-Based Methods (Sec. 2)	Eulerian & Hybrid Methods (Sec. 3)	Energy-Based Modeling (Sec. 4)	Constraint-Based Modeling (Sec. 5)	Unified Models Monolithic modeling frameworks, yielding strong two-way coupling					
Deformables (elastic & plastic)	[MKN*04] [PKA*05] [SSP07] [BIT09] [MKB*10] [YJL*16] [YCL*17] [PGBT18] [CLC*20] [KBF*21] [KUKH23]	[SZ\$95] [CGF006] [LJ:11] [SS1*14] [DS*15] [YSB*15] [TLK16] [FGG*17] [GTJS17] [JGT17] [ZB17] [GHF*18] [HFG*18] [FLG319] [HGG*19] [SXH*21] [LLJ22] [TB22] [QLY*23] [LLH*24] [TLZ*24]	[BAV*10] [BUAG12] [SB12b] [SHST12] [BML*14] [GSS*15] [LBK17] [BOFN18] [SGK18] [LFS*20] [MEM*20] [LMY*22] [LCK22] [LLJ22] [KE22] [LFFJ*23]	[Jak01] [MHTG05] [MHR106] [SLM06] [MMCK14] [BKCW14] [Ch014] [MCKM15] [CM116] [BGA017] [MMC16] [BGA017] [MMT*19] [MEM*19] [WWB*19] [MMC*20] [MM21] [TTKA23] [CHC24] [SZDJ24] [Cc124] [MAK24] [SZDJ24] [YLL*24]						
					Fluids & Fluid Phe- nomena	[PW02] [MCG03] [SSP07] [BT07] [BIT09] [SP09] [Pri12] [SB129] [A 4T13]	[Har62] [HW*65] [BR86] [FM96] [Sta99] [Pes02] [TUKE02] [CMT041 [ZB05]	[TB20] [TB21] [TB22] [XLYJ23]	[BLS12] [MM13] [MMCK14] [TNF14] [BGA017] [XRW*22]	
Granular Materials	[LD09] [AO11] [IWT13] [YJL*16] [YCL*17] [GHB*20]	[ZB05] [SSC*13] [DBD16] [KGP*16] [TGK*17] [GPH*18]		[Hol14] [MMCK14] [SWLB14] [FM17] [HG18] [NS18] [KKHS20] [YLL*24]		[ICS"14] [HW [TDF*15] [BF [YCL*17] [Y] [PGBT18] [W	[ICS*14] [HVZ*15] [TDF*15] [BK17] [PT17] [YCL*17] [YML*17] [PGBT18] [WKBB18]	[CGF006] [KFC006] [CFL*07] [MCP*09] [SABS14] [SSJ*14] [ATW15] [JSS*15]		[YLL*24]
Rigid Bodies & Multibody Systems	[SSP07] [YCL*17] [GPB*19] [PT23]	[TB20] [TB22] [LLH*24] [TLZ*24]	[CDGB19] [MEM*20] [FLS*21] [CLL*22] [LKL*22]	[Bar94] [MC95] [ST96] [Bar96] [AP97] [Ste00] [Jak01] [Erl05] [MHTG05] [Lac07b, Lac07a] [GZ010] [MMCK14] [DCB16] [FM17] [MEM*19] [PAK*19] [WWB*19] [MMC*20] [MAK24]		[BKKW19][CBG ⁺ 19] [GP8 ⁺ 19][WL [*] 20] [ZRS [*] 20][KBF [*] 21] [LWW [*] 21][WDK [*] 21] [LHWW ² 2][XRW [*] 22] [JWL [*] 23][PT23][XLYJ23] [ZLX [*] 24][YWX [*] 24]	[KGJ-15] [FGG-17] [GPH+18] [HFG+18] [JGT17] [ZB17] [FLGJ19] [GAB20] [HGMRT20] [TB20] [CKMR+21] [SXH+21] [QLDGJ22] [TB22] [STBA24] [QLY+23] [LLH+24] [TLZ+24]			
Co-dimensional Structures	[MKB*10] [ZQC*14] [ZLQF15]	[JGT17] [GHF*18] [HGG*19] [LLH*24]	[GHD503] [ST07] [BWR [*] 08] [CSvRV18] [Kim20] [LKJ21] [CXY [*] 23] [HB23] [SWP [*] 23] [WB23] [LFFJB24]	[Jak01] [MHHR06] [GHF*07] [SL08] [SLNB10] [MKC12] [BKCW14] [MMCK14] [USS15] [MMC16] [KS16] [DKWB18] [ARM*19]	Multi-Phase, Phase Transitions & Porous Flow	[MKN*04] [SSP07] [LAD08] [SP08] [BIT09] [LD09] [PC13] [RLX*14] [YCR*15] [YJL*16] [PGBT18] [CLC*20] [GHB*20] [WFM21] [RXL21] [RHLC22] [XWW*23] [YR23] [Z[X*20]	[SSJ*14] [ATW15] [GPH*18] [GAB20] [CKMR*21] [SXH*21] [LMLD22] [TLZ*24]		[MMCK14]	
		:			Other Phenomena	[LL10] [Pri12]	[WFL*19] [WDG*19] [SNZ*21] [FCK22] [CCL*22]	[CSvRV18] [CNZ*22] [WFFJB24]	[GZO10] [Cho14] [BCK*22]	

	Lagrangian Point-Based Methods (Sec. 2)	Eulerian & Hybrid Methods (Sec. 3)	Energy-Based Modeling (Sec. 4)	Constraint-Based Modeling (Sec. 5)		Unified	Models			
Deformables (elastic & plastic)	[MKN*04] [PKA*05] [SSP07] [BIT09] [MKB*10] [YJL*16] [YCL*17] [PGBT18] [CLC*20] [KBF*21] [KUKH23]	[SZS95] [CGF006] [LL7 11] [SS7 14] [JSS*15] [YSB*15] [TLK16] [FGC*17] [GTIS17] [JGT17] [ZB17] [GHF*18] [HGC*18] [FLG119] [HGC*19] [SXH*21] [LLJ22] [TB22] [QLY*23] [LLH*24] [TLZ*24]	[BAV*10] [BUAG12] [SB12b] [SHST12] [BML*14] [GSS*15] [LBK17] [BOFN18] [SGK18] [LFS*20] [MEM*20] [LMY*22] [LCK22] [LLJ22] [KE22] [LFFJ*23]	[Jak01] [MHTG05] [MHRR06] [SLM06] [MMCK14] [BKCW14] [Cho14] [MCKN15] [CMM16] [DCB16] [MMC16] [BGA017] [FM17] [ARM*19] [MEM*19] [WWB*19] [MMC*20] [MUB*19]	Monolithic modeling frameworks, yielding strong two-way coupling					
				[TTKA23] [CHC 24a] [Cet24] [MAK24] [SZDJ24] [YLL*24]	Fluids & Fluid Phe- nomena	[PW02] [MCG03] [SSP07] [BT07] [BIT09] [SP09] [Pri12] [SB12a] [A AT13]	[Har62] [HW*65] [BR86] [FM96] [Sta99] [Pes02] [TUKE02] [CMT04] [ZB05]	[TB20] [TB21] [TB22] [XLYJ23]	[BLS12] [MM13] [MMCK14] [TNF14] [BGA017] [XRW*22]	
Granular Materials	[LD09] [AO11] [IWT13] [YJL*16] [YCL*17] [GHB*20]	[ZB05] [SSC*13] [DBD16] [KGP*16] [TGK*17] [GPH*18]		[Hol14] [MMCK14] [SWLB14] [FM17] [HG18] [NS18] [KKHS20] [YLL*24]		[][[[][[][][][][][][][][][][][][][][]	[ICS [*] 14] [HW2 [*] 15] [TDF [*] 15] [BK17] [PT17] [YCL [*] 17] [YML [*] 17] [PGBT18] [WKBB18]	[CGF006] [KFC006] [CFL*07] [MCP*09] [SABS14] [SSJ*14] [ATW15] [JSS*15]		[YLL*24]
Rigid Bodies & Multibody Systems	[SSP07] [YCL*17] [GPB*19] [PT23]	[TB20] [TB22] [LLH*24] [TLZ*24]	[CDGB19] [MEM*20] [FLS*21] [CLL*22] [LKL*22]	[Bar94] [MC95] [ST96] [Bar96] [AP97] [Ste00] [Jak01] [Erl05] [MHTG05] [Lac07b, Lac07a] [GZ010] [MMCK14] [DCB16] [FM17] [MEM*19] [PAK*19] [WM*19] [MMC*20] [MAK24]		[BKKW19] [CBG ⁺ 19] [GPB ⁺ 19] [WJL*20] [ZRS*20] [KBF [*] 21] [LWB [*] 21] [WDK*21] [LHW [*] 22] [XRW [*] 22] [JWL [*] 23] [PT23] [XLYJ23] [ZLX [*] 24] [YWX [*] 24]	[RGJ"15] [FGG"17] [GPH*18] [HFG*18] [JGT17] [ZB17] [FLGJ19] [GAB20] [GMRT20] [TB20] [CKMR*21] [SXH*21] [QLD422] [TB22] [STBA24] [QLY*23] [LLH*24] [TLZ*24]			
Co-dimensional Structures	[MKB*10] [ZQC*14] [ZLQF15]	[JGT17] [GHF*18] [HGG*19] [LLH*24]	[GHDS03] [ST07] [BWR ² 08] [CSvRV18] [Kim20] [LKJ21] [CXY [*] 23] [HB23] [SWP [*] 23] [WB23] [LFFJB24]	[Jak01] [MHR06] [GHF*07] [SL08] [SLNB10] [MKC12] [BKCW14] [MMC14] [USS15] [MMC16] [KS16] [DKWB18] [ARM*19]	Multi-Phase, Phase Transitions & Porous Flow	[MKN*04] [SSP07] [LAD08] [SP08] [BIT09] [LD09] [PC13] [RLX*14] [YCR*15] [YJL*16] [PGBT18] [CLC*20] [GHB*20] [WFM21] [RXL21] [RHLC22] [XWW*23] [YR23] [ZLX*24]	[SSJ*14] [ATW15] [GPH*18] [GAB20] [CKMR*21] [SXH*21] [LMLD22] [TLZ*24]		[MMCK14]	
		:			Other Phenomena	[LL10] [Pri12]	[WFL*19] [WDG*19] [SNZ*21] [FCK22] [CCL*22]	[CSvRV18] [CNZ*22] [WFFJB24]	[GZO10] [Cho14] [BCK*22]	

	Rigid Bodies	Granular Materials	Fluids	Rods & Shells
Deformable Solids	[MHHR06] [HFG*18] [DS19] [HGG*19] [HGG*19] [BKWK20] [TB22] [LLH*24]	[HGG*19] [LLH*24]	[GSLF05] [CGF006] [BBB07] [RMSG*08] [RMSG*08] [ACAT13] [JSS*15] [ZB17] [SLZ17] [ANZS18] [TBFL19] [ARNM*20] [CCL*22] [TB22] [XLYJ23] [LLH*24]	[LLH*24]
Rigid Bodies -		[AO11] [IWT13] [HFG*18] [DS19] [HGG*19] [LLH*24]	[FM96] [Pes02] [TUKF02] [GSLF05] [RZF05] [KFC006] [BBB07] [RMSG*08] [RMEF09] [BTT09] [AIA*12] [ATW15] [FM15] [KB17] [ANZS18] [BGI*18] [BGPT18] [HFG*18] [TBFL19] [BKWK20] [WAK20] [LCD*20] [LLDL21] [TB20] [TB22] [BWRJ23] [SZYA24]	[MHHR06] [HGG*19]
Granular Materials	+	-	[GPH*18] [WFM21]	[GHF*18] [HGG*19] [LLH*24]
Fluids	+	+	-	[GSLF05] [ANZS18] [LLH*24]

Coupling Techniques

Techniques for two-way coupling of multiple models or discretizations

	Rigid Bodies	Granular Materials	Fluids	Rods & Shells
Deformable Solids	[MHHR06] [HFG*18] [DS19] [HGG*19] [HGG*19] [BKWK20] [TB22] [LLH*24]	[HGG*19] [LLH*24]	[GSLF05] [CGF006] [BBB07] [RMSG*08] [RMSG*08] [ACAT13] [JSS*15] [ZB17] [SLZ17] [ANZS18] [TBFL19] [ARNM*20] [CCL*22] [TB22] [XLYJ23] [LLH*24]	[LLH*24]
Rigid Bodies	-	[AO11] [IWT13] [HFG*18] [DS19] [HGG*19] [LLH*24]	[FM96] [Pes02] [TUKF02] [GSLF05] [RZF05] [KFC006] [BBB07] [RMSG*08] [RMEF09] [BTT09] [AIA*12] [ATW15] [FM15] [KB17] [ANZS18] [BGI*18] [BGPT18] [HFG*18] [TBFL19] [BKWK20] [WAK20] [LCD*20] [LLDL21] [TB20] [TB22] [BWRJ23] [SZYA24]	[MHHR06] [HGG*19]
Granular Materials	+	-	[GPH*18] [WFM21]	[GHF*18] [HGG*19] [LLH*24]
Fluids	+	+	-	[GSLF05] [ANZS18] [LLH*24]

Coupling Techniques

Techniques for two-way coupling of multiple models or discretizations

	Rigid Bodies	Granular Materials	Fluids	Rods & Shells
Deformable Solids	[MHHR06] [HFG*18] [DS19] [HGG*19] [HGG*19] [BKWK20] [TB22] [LLH*24]	[HGG*19] [LLH*24]	[GSLF05] [CGF006] [BBB07] [RMSG*08] [RMSG*08] [ACAT13] [JSS*15] [ZB17] [SLZ17] [ANZS18] [TBFL19] [ARNM*20] [CCL*22] [TB22] [XLYJ23] [LLH*24]	[LLH*24]
Rigid Bodies	-	[AO11] [IWT13] [HFG*18] [DS19] [HGG*19] [LLH*24]	[FM96] [Pes02] [TUKF02] [GSLF05] [RZF05] [KFC006] [BBB07] [RMSG*08] [RMEF09] [BTT09] [AIA*12] [ATW15] [FM15] [KB17] [ANZS18] [BG[*18] [BGPT18] [HFG*18] [TBFL19] [BKWK20] [WAK20] [LCD*20] [LLDL21] [TB20] [TB22] [BWRJ23] [SZYA24]	[MHHR06] [HGG*19]
Granular Materials	+	-	[GPH*18] [WFM21]	[GHF*18] [HGG*19] [LLH*24]
Fluids	+	+	-	[GSLF05] [ANZS18] [LLH*24]

Coupling Techniques

Techniques for two-way coupling of multiple models or discretizations

Structure of the Talk Series

• Part I: Constraint-Based Multiphysics Modeling

- Flexible, Lagrangian domain discretization
- Behavior and interactions modeled using constraint functions

Robotic hand grasping an elastic cube [Fernandez-Fernandez et al., 2024]

Structure of the Talk Series

• Part I: Constraint-Based Multiphysics Modeling

• Part II: Energy-Based Multiphysics Modeling

- Equally flexible domain discretization
- Behavior and interactions modeled using energy functions

Robotic hand grasping an elastic cube [Fernandez-Fernandez et al., 2024]

Structure of the Talk Series

- Part I: Constraint-Based Multiphysics Modeling
- Part II: Energy-Based Multiphysics Modeling
- Part III: Lagrangian Point-Based, Eulerian and Hybrid Methods
 - Lagrangian, Eulerian and Hybrid discretizations Ο
 - Simulated domain treated as a continuum \bigcirc

Robotic hand grasping an elastic cube [Fernandez-Fernandez et al., 2024]

Part I Constraint-Based Multiphysics Modeling

Daniel Holz^{1,2}, Stefan Rhys Jeske³, Fabian Löschner³, Jan Bender³, Yin Yang⁴, Sheldon Andrews²

Outline

- 1. Introduction
- 2. Structure of the Talk Series

3. Part I: Constraint-Based Multiphysics Modeling

- 1. A Unified Modeling Framework
- 2. Position-Level Formulation
- 3. Velocity-Level Formulation

4. Questions

• Newton's 2nd law of motion

 $\mathbf{M}\ddot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ $\mathbf{x} = [x_1, \dots, x_n]^T \quad \text{Generalized coordinates}$

• Newton's 2nd law of motion

 $\mathbf{M}\ddot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ $\mathbf{x} = [x_1, \dots, x_n]^T \quad \text{Generalized coordinates}$

- Constraints as unified modeling tool
 - Idea: directly model the desired behavior

• Newton's 2nd law of motion

 $\mathbf{M}\ddot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ $\mathbf{x} = [x_1, \dots, x_n]^T \quad \text{Generalized coordinates}$

• Constraints as unified modeling tool

• Idea: directly model the desired behavior

 $\mathbf{C}_b(\mathbf{x}) = \mathbf{0}$ Bilateral constraints

$$\mathbf{C} = [C_1(\mathbf{x}), \dots, C_k(\mathbf{x})]^T$$

• Newton's 2nd law of motion

 $\mathbf{M}\ddot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ $\mathbf{x} = [x_1, \dots, x_n]^T \quad \text{Generalized coordinates}$

• Constraints as unified modeling tool

• Idea: directly model the desired behavior

 $C_b(x) = 0$ Bilateral constraints $C_u(x) \ge 0$ Unilateral constraints

$$\mathbf{C} = [C_1(\mathbf{x}), \dots, C_k(\mathbf{x})]^T$$

$$C_u(\mathbf{x}) = \|\mathbf{x}_i - \mathbf{x}_j\| - (r_i + r_j) \ge 0$$

Contact constraint

• Newton's 2nd law of motion

 $\mathbf{M}\ddot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$ $\mathbf{x} = [x_1, \dots, x_n]^T \quad \text{Generalized coordinates}$

• Constraints as unified modeling tool

• Idea: directly model the desired behavior

 $C_b(x) = 0$ Bilateral constraints $C_u(x) \ge 0$ Unilateral constraints

$$\mathbf{C} = [C_1(\mathbf{x}), \dots, C_k(\mathbf{x})]^T$$

Contact constraint

A Unified Modeling Framework: Discretization

1) Discretization of equations of motion

Equations of motion

Simulated material domains

A Unified Modeling Framework: Discretization

1) Discretization of equations of motion

 $M\ddot{x} = f(x)$ $C_{h}(x) = 0$ $\mathbf{C}_u(\mathbf{x}) \ge \mathbf{0}$

Equations of motion

A Unified Modeling Framework: Discretization

1) Discretization of equations of motion

- Two popular approaches
 - **Position-level formulation:** Position Based Dynamics
 - **Velocity-level formulation:** Nonsmooth Multidomain Dynamics
- Very stable, even under coarse discretizations and large time steps
 - Good choice for **real-time** and **interactive** applications

A Unified Modeling Framework: Multiphysics Modeling

2) Multiphysics Modeling

- What do we need?
- Constraint function definition

$$C_b(\mathbf{x}) = \mathbf{0} \qquad ?$$
$$C_u(\mathbf{x}) \ge \mathbf{0}$$

Constraint functions

Multiple material domains in interaction

Multiple material domains

Fluids

Rigid Bodies

Deformables

Granular Materials

2) Multiphysics modeling via constraints

Fluids

Rigid Bodies

Deformables

Granular Materials

Position Based Dynamics

Rigid car with flexible tires [Müller et al., 2020]

Plastic modeling clay [Yu et al., 2024]

Deformed cloth [Bender et al., 2014]

Position Based Fluids [Macklin and Müller, 2013]

Rod forming plectonemes [Deul et al., 2018] Cream [Barreiro et al., 2017]

- Predictor-Corrector scheme [Müller et al., 2006]
 - 1. Predict: Predict unconstrained positions
 - 2. Correct: Correct constrained positions in solver
- Different **solver** types:
 - o Iterative, e.g., Gauss-Seidel, or Jacobi
 - Direct [Goldenthal et al., 2007; Deul et al., 2018]

$$\mathbf{p}_i = \mathbf{x}_i + \Delta t \mathbf{v}_i + \Delta t^2 \frac{\mathbf{f}(\mathbf{x}_i)}{m_i}$$

- Predictor-Corrector scheme [Müller et al., 2006]
 - **Predict:** Predict **unconstrained** positions 1.
 - 2. **Correct**: Correct **constrained** positions in solver
- Different **solver** types:
 - Iterative, e.g., Gauss-Seidel, or Jacobi Ο
 - Direct [Goldenthal et al., 2007; Deul et al., 2018] Ο

$$\mathbf{p}_i = \mathbf{x}_i + \Delta t \mathbf{v}_i + \Delta t^2 \frac{\mathbf{f}(\mathbf{x}_i)}{m_i}$$

- Predictor-Corrector scheme [Müller et al., 2006]
 - 1. Predict: Predict unconstrained positions
 - 2. Correct: Correct constrained positions in solver

$$\mathbf{p}_i = \mathbf{x}_i + \Delta t \mathbf{v}_i + \Delta t^2 \frac{\mathbf{f}(\mathbf{x}_i)}{m_i}$$

- Predictor-Corrector scheme [Müller et al., 2006]
 - 1. Predict: Predict unconstrained positions
 - 2. Correct: Correct constrained positions in solver
- Different **solver** types:
 - o Iterative, e.g., Gauss-Seidel, or Jacobi
 - O Direct [Goldenthal et al., 2007; Deul et al., 2018]
- **3. Update velocity** from position change
 - No extrapolation, yields high stability
 - But some limitations (more later)

$$\mathbf{p}_i = \mathbf{x}_i + \Delta t \mathbf{v}_i + \Delta t^2 \frac{\mathbf{f}(\mathbf{x}_i)}{m_i}$$

Limitations of original PBD

- 1. Time-step and iteration dependence
- 2. Resolution dependence

Increased stiffness with larger iteration count in original PBD [Bouaziz et al., 2014]

Position Based Dynamics: Discretization

Limitations of original PBD

- 1. Time-step and iteration dependence
- 2. Resolution dependence

1. overcome by eXtended PBD (XPBD) [Macklin et al., 2016]

• Derived from elastic energy potential U [Servin et al., 2006]

Bouaziz et al., 2014

Position Based Dynamics: Discretization

Limitations of original PBD

- 1. Time-step and iteration dependence
- 2. Resolution dependence

1. overcome by eXtended PBD (XPBD) [Macklin et al., 2016]

• Derived from elastic energy potential U [Servin et al., 2006]


```
Bouaziz et al., 2014
```


Position Based Dynamics: Discretization

Limitations of original PBD

- 1. Time-step and iteration dependence
- 2. Resolution dependence
- 1. overcome by eXtended PBD (XPBD) [Macklin et al., 2016]

2. overcome by Bender et al. (2014)

- Continuous, deformable materials
- Tetrahedral volume elements (FEM-style)
- Position-level constraint of the strain energy

Bender et al., 2014

3.2 Position-Level Formulation

2) Multiphysics modeling via constraints

Fluids

Rigid Bodies

Deformables

Granular Materials

- Density constraint C_i [Bodin et al., 2012]
 - Models incompressible fluid
 - Enforces uniform reference density ρ_0 at \mathbf{x}_i

$$C_i = \frac{\rho_i}{\rho_0} - 1 \stackrel{!}{=} 0$$

Real-time Position Based Fluid simulation [Macklin and Müller, 2013]

- Density constraint C_i [Bodin et al., 2012]
 - Models incompressible fluid
 - Enforces uniform reference density ho_0 at \mathbf{x}_i
- SPH-based material interpolation
 - \circ Smoothing kernel *W* with radius *h*

 $C_i = \frac{\rho_i}{\rho_0} - 1 \stackrel{!}{=} 0$ $\rho_i = \sum_{i=1}^n m_j W(\mathbf{x}_i - \mathbf{x}_j, h)$

Macklin and Müller, 2013

- Density constraint C_i [Bodin et al., 2012]
 - Models incompressible fluid
 - Enforces uniform reference density ho_0 at \mathbf{x}_i
- SPH-based material interpolation
 - Smoothing kernel W with radius h
- Constraint gradient for inclusion in PBD

$$\nabla C_i = \frac{1}{\rho_0} \sum_{j=1}^n m_j \nabla W(\mathbf{x}_i - \mathbf{x}_j, h)$$

$$C_i = \frac{\rho_i}{\rho_0} - 1 \stackrel{!}{=} 0$$
$$\rho_i = \sum_{j=1}^n m_j W(\mathbf{x}_i - \mathbf{x}_j, h)$$

- Density constraint C_i [Bodin et al., 2012]
 - Models incompressible fluid
 - Enforces uniform reference density ho_0 at \mathbf{x}_i
- Extensions
 - **Multi-phase fluids & smoke** [Macklin et al., 2014]

Macklin et al., 2014

3.2 Position-Level Formulation

- Density constraint C_i [Bodin et al., 2012]
 - Models incompressible fluid
 - Enforces uniform reference density ho_0 at \mathbf{x}_i
- Extensions
 - Multi-phase fluids & smoke [Macklin et al., 2014]
 - Viscous fluids & phase transitions [Takahashi et al., 2014]

Takahashi et al., 2014

- Density constraint C_i [Bodin et al., 2012]
 - Models incompressible fluid
 - Enforces uniform reference density ho_0 at \mathbf{x}_i
- Extensions
 - Multi-phase fluids & smoke [Macklin et al., 2014]
 - Viscous fluids & phase transitions [Takahashi et al., 2014]
 - Strong surface tension [Xing et al., 2022]

Xing et al., 2022

- Density constraint C_i [Bodin et al., 2012]
 - Models incompressible fluid
 - Enforces uniform reference density ho_0 at \mathbf{x}_i
- Extensions
 - Multi-phase fluids & smoke [Macklin et al., 2014]
 - Viscous fluids & phase transitions [Takahashi et al., 2014]
 - Strong surface tension [Xing et al., 2022]
 - Viscoelastic and elastoplastic fluids [Barreiro et al., 2017]
 - Hybrid velocity-based / position-based solver
 - Enforces both **position-level** and **velocity-level** constraints

Barreiro et al., 2017

Position Based Rigid Bodies

- PBD extended to rigid bodies [Deul et al., 2014]
 - Introduce rotations \mathbf{q}_i
 - Scalar particle mass m_i becomes rigid body mass matrix M_i
 - Efficient representation

Rigid elk collides with rubber ducky [Deul et al., 2014]

Position Based Rigid Bodies

- PBD extended to rigid bodies [Deul et al., 2014]
 - Introduce rotations \mathbf{q}_i
 - Scalar particle mass m_i becomes rigid body mass matrix \mathbf{M}_i
 - Efficient representation

Correction of particles

Correction of rigid bodies [Müller et al., 2020]

Position Based Rigid Bodies

- PBD extended to rigid bodies [Deul et al., 2014]
- Compatible with PBD particles
 - Strong two-way coupling
 - Shows flexibility of PBD discretization
- Joints and friction [Deul et al., 2014]
- Restitution [Müller et al., 2020]
 - Via additional **velocity-level** solve

Rigid car with deformable tires drives over obstacles [Müller et al., 2020]

Position Based Deformables

- Mostly tetrahedral/triangular discretization
- Deformable material constraints
 - Constrain strain energy [Bender et al., 2014]
 - Constrain strain tensor [Müller et al., 2015]
 - Constraint derived from **elastic energy potential** [Macklin et al., 2016; Francu et al., 2017]
 - Shape matching [Chentanez et al., 2016]

Hookean, isotropic cantilever beam [Macklin et al., 2016]

Cloth simulation using strain energy constraint [Bender et al., 2014]

Position Based Deformables

- Mostly tetrahedral/triangular discretization
- Deformable material constraints

• Support for...

- Hookean materials [Bender et al., 2014; Macklin et al., 2016; Francu et al., 2017]
- Hyperelastic materials [Bender et al., 2014; Macklin and Müller, 2021; Ton-That et al., 2022; Chen et al., 2024]
- Higher-order finite elements [Saillant et al., 2024]

Hyperelastic materials under compression [Bender et al., 2014]

3.2 Position-Level Formulation

Position Based Rods

- Co-dimensional structure
 - Ideal for hair, fur, vegetation, cables, ropes, ... Ο
- Cosserat rod theory in PBD [Umetani et al., 2015]
 - Elastic rods with stretching, bending and torsion 0
 - Consistent material frames through added **ghost points** 0

Ghost points (cyan) for defining rod material frames [Umetani et al., 2015]

Squishy ball hits a wall [Umetani et al., 2015]

Position Based Rods

- Co-dimensional structure
 - Ideal for hair, fur, vegetation, cables, ropes, ...
- Cosserat rod theory in PBD [Umetani et al., 2015]

• Extensions

- Material frames via quaternions [Kugelstadt and Schömer, 2016]
- High material stiffness via direct solver [Deul et al., 2018]
- Volumetric deformations with volume conservation [Angles et al., 2019]

Twisted rod forming plectonemes [Deul et al., 2018]

Position Based Granular Materials

- Two common approaches
 - DEM-based & Continuum-based
- DEM-based
 - PBD soil particles
 - Particle interaction constraints
 - Viscoelastic collisions
 [Holz, 2014; Macklin et al., 2016; Francu et al., 2017]
 - Coulomb friction [Macklin et al., 2014; Holz, 2014]
 - Cohesion [Holz and Galarneau, 2018]

Excavator digging in clay type soil [Holz and Galarneau, 2018]

Position Based Granular Materials

- Continuum-based
 - Plasticity theory in PBD [Yu et al., 2024] Ο
 - eXtended Position-Based Inelasticity (XPBI)
 - Viscoplastic and elastoplastic materials Ο
 - Strongly coupled sand, water, snow, metal, and foam
 - Employs a hybrid grid-particle discretization (cf. MPM) Ο
 - Well-suited for large deformations and fracture
 - Challenge: Ο
 - Needs accurate estimates of deformation gradient \mathbf{F}^+
 - Depends on future velocity gradient $abla v^+$
 - Approach: Reformulate XPBD on the velocity-level
 - Next slide...

Sandcastle washed away by water in XPBI [Yu et al., 2024]

Calculation of future deformation gradient F^+

XPBD vs. XPBI (velocity-level)

XPBD:

1. Predict position:

$$\mathbf{p} = \mathbf{x} + \Delta t \mathbf{v} + \Delta t^2 \mathbf{M}^{-1} \mathbf{f}(\mathbf{x})$$

2. Correct positions iteratively in solver:

$$\Delta \lambda = \frac{-C(\mathbf{p}) - \alpha/\Delta t^2 \lambda}{\nabla C(\mathbf{p})^T \mathbf{M}^{-1} \nabla C(\mathbf{p}) + \alpha/\Delta t^2}$$
$$\lambda \leftarrow \lambda + \Delta \lambda$$
$$\Delta \mathbf{p} = \mathbf{M}^{-1} \nabla C(\mathbf{p}) \Delta \lambda$$
$$\mathbf{p} \leftarrow \mathbf{p} + \Delta \mathbf{p}$$

3. Update velocity:

$$\mathbf{v} \leftarrow (\mathbf{p} - \mathbf{x}) / \Delta t$$
$$\mathbf{x} \leftarrow \mathbf{p}$$

XPBD vs. XPBI (velocity-level)

XPBD:

1. Predict position:

$$\mathbf{p} = \mathbf{x} + \Delta t \mathbf{v} + \Delta t^2 \mathbf{M}^{-1} \mathbf{f}(\mathbf{x})$$

- 2. Correct positions iteratively in solver: $\Delta \lambda = \frac{-C(\mathbf{p}) - \alpha/\Delta t^2 \lambda}{\nabla C(\mathbf{p})^T \mathbf{M}^{-1} \nabla C(\mathbf{p}) + \alpha/\Delta t^2}$ $\lambda \leftarrow \lambda + \Delta \lambda$ $\Delta \mathbf{p} = \mathbf{M}^{-1} \nabla C(\mathbf{p}) \Delta \lambda$ $\mathbf{p} \leftarrow \mathbf{p} + \Delta \mathbf{p}$
- 3. Update velocity from new position:

$$\mathbf{v} \leftarrow (\mathbf{p} - \mathbf{x})/\Delta t$$

 $\mathbf{x} \leftarrow \mathbf{p}$

Multiphysics Simulation Methods in Computer Graphics – EG 2025, London

XPBI (velocity-level XPBD):

1. Predict velocity:

 $\mathbf{v} \leftarrow \mathbf{v} + \Delta t \mathbf{M}^{-1} \mathbf{f}(\mathbf{x})$

- 2. Correct velocities iteratively in solver: $\Delta \lambda = \frac{-C(\mathbf{x} + \Delta t \mathbf{v}) - \alpha/\Delta t^2 \lambda}{\nabla C(\mathbf{x} + \Delta t \mathbf{v})^T \mathbf{M}^{-1} \nabla C(\mathbf{x} + \Delta t \mathbf{v}) + \alpha/\Delta t^2}$ $\lambda \leftarrow \lambda + \Delta \lambda$ $\Delta \mathbf{v} = \frac{1}{\Delta t} \mathbf{M}^{-1} \nabla C(\mathbf{x} + \Delta t \mathbf{v}) \Delta \lambda$ $\mathbf{v} \leftarrow \mathbf{v} + \Delta \mathbf{v}$
 - 3. Update position from new velocity:

$$\mathbf{x} \leftarrow \mathbf{x} + \Delta t \mathbf{v}$$

2) Multiphysics modeling via constraints

Fluids

Rigid Bodies

Deformables

Granular Materials

Velocity-Level Formulation

Adhesive jello [Gascon et al., 2010]

- Chain with heavy weight [Andrews et al., 2022]
- Constraint Fluids [Bodin et al., 2012]

Rods wrapped around rigid beam [Servin et al., 2010]

Constraint-based suction [Bernardin et al., 2022]

- Nonsmooth, rigid body dynamics modeling [Moreau, 1963; Moreau, 1985]
 Well-suited for hard, unilateral interactions, e.g., contacts
- Applied in numerous popular rigid body dynamics methods [Bender et al., 2014]

$$\begin{aligned} \mathbf{M}\ddot{\mathbf{x}} &= \mathbf{f}(\mathbf{x}) & \mathbf{M}\ddot{\mathbf{x}} \approx \mathbf{M} \frac{\mathbf{v}^{+} - \mathbf{v}}{\Delta t} = \mathbf{f}_{\text{ext}} + \mathbf{f}_{c} \\ & \longrightarrow & \nabla \mathbf{C}_{b}^{T} \mathbf{v}^{+} = \mathbf{0} \\ & \mathbf{C}_{u}(\mathbf{x}) \geq \mathbf{0} & \nabla \mathbf{C}_{u}^{T} \mathbf{v}^{+} \geq \mathbf{0} \end{aligned}$$

Equations of motion

Equations of motion on **velocity level**

- Nonsmooth, rigid body dynamics modeling [Moreau, 1963; Moreau, 1985]
 - Well-suited for hard, unilateral interactions, e.g., contacts
- Applied in numerous popular rigid body dynamics methods [Bender et al., 2014]
 - Lagrange multiplier method
 - Linear Complementarity Problem (LCP) formulation

Mixed Linear Complementarity Problem (MLCP)

- Nonsmooth, rigid body dynamics modeling [Moreau, 1963; Moreau, 1985]
 Well-suited for hard, unilateral interactions, e.g., contacts
- Applied in numerous popular rigid body dynamics methods [Bender et al., 2014]

- Nonsmooth, rigid body dynamics modeling [Moreau, 1963; Moreau, 1985]
- Applied in numerous popular rigid body dynamics methods [Bender et al., 2014]

Different solver types

- Iterative, e.g., Gauss-Seidel, or Jacobi Ο
 - Favorable efficiency
- Direct, e.g., pivoting solvers 0
 - Ideal for high stiffness/mass ratios
- Hybrid (direct/iterative) Ο
 - Combined benefits

Multiphysics Simulation Methods in Computer Graphics - EG 2025, London

• Limitations

- 1. Only hard constraints, e.g., rigid bodies with hard contacts
- 2. Position "drift" at velocity-level

 $\mathbf{C}(\mathbf{x}) \stackrel{!}{=} \mathbf{0} \longrightarrow \nabla \mathbf{C}^T \mathbf{v}^+ \stackrel{!}{=} \mathbf{0}$

Andrews et al., 2022

Limitations

- Only hard constraints, e.g., rigid bodies with hard contacts 1.
- 2. Position "drift" at velocity-level
- Generalization to Nonsmooth Multidomain Dynamics (NMD)
 - **Multiple material domains:** model more than rigid bodies 1.

 $\mathbf{C}(\mathbf{x}) \stackrel{!}{=} \mathbf{0} \longrightarrow \nabla \mathbf{C}^T \mathbf{v}^+ \stackrel{!}{=} \mathbf{0}$

• Limitations

- 1. Only hard constraints, e.g., rigid bodies with hard contacts
- 2. Position "drift" at velocity-level
- Generalization to Nonsmooth Multidomain Dynamics (NMD)
 - 1. Multiple material domains: model more than rigid bodies
 - Soften" the constraints [Servin et al., 2006]
 - Robust, physically meaningful parametrization
 - Constraints as stiff limits of energy potentials $U(\mathbf{x})$
 - Compliance matrix α

$$\mathbf{C}(\mathbf{x}) \stackrel{!}{=} \mathbf{0} \longrightarrow \nabla \mathbf{C}^T \mathbf{v}^+ \stackrel{!}{=} \mathbf{0}$$

$$U(\mathbf{x}) = \frac{1}{2} \mathbf{C}(\mathbf{x})^T \alpha^{-1} \mathbf{C}(\mathbf{x})$$
$$\mathbf{C}(\mathbf{x}) + \lambda \alpha \stackrel{!}{=} \mathbf{0}$$

I imitations

- Only hard constraints, e.g., rigid bodies with hard contacts 1.
- 2. Position "drift" at velocity-level

Generalization to **Nonsmooth Multidomain Dynamics** (NMD) $U(\mathbf{x}) = \frac{1}{2} \mathbf{C}(\mathbf{x})^T \alpha^{-1} \mathbf{C}(\mathbf{x})$

- Multiple material domains: model more than rigid bodies 1.
 - "Soften" the constraints [Servin et al., 2006]
 - Robust, physically meaningful parametrization
 - Constraints as stiff limits of energy potentials $U(\mathbf{x})$
 - Compliance matrix α

Constraint stabilization 2.

Deals with position "drift" problem

 $\mathbf{C}(\mathbf{x}) \stackrel{!}{=} \mathbf{0} \longrightarrow \nabla \mathbf{C}^T \mathbf{v}^+ \stackrel{!}{=} \mathbf{0}$

 $\mathbf{C}(\mathbf{x}) + \lambda \alpha \stackrel{!}{=} \mathbf{0}$

 $\mathbf{C}(\mathbf{x}^+) \approx \mathbf{C}(\mathbf{x}) + \Delta t \nabla \mathbf{C}^T \mathbf{v}^+$

 $\nabla \mathbf{C}^T \mathbf{v}^+ + \alpha \lambda \stackrel{!}{=} -\mathbf{C}(\mathbf{x})/\Delta t$

• Update formulation:

$$\begin{cases} \begin{bmatrix} \mathbf{M} & -\nabla \mathbf{C}_{b} & -\nabla \mathbf{C}_{u} \\ \nabla \mathbf{C}_{b}^{T} & \mathbf{0} & \mathbf{0} \\ \nabla \mathbf{C}_{u}^{T} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{v}^{+} \\ \boldsymbol{\lambda}_{b} \\ \boldsymbol{\lambda}_{u} \end{bmatrix} - \begin{bmatrix} \mathbf{M}\mathbf{v} + \Delta t \mathbf{f}_{ext} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{w} \end{bmatrix} \\ \mathbf{0} \le \mathbf{w} \perp \boldsymbol{\lambda}_{u} \ge \mathbf{0} \end{cases}$$

$$\nabla \mathbf{C}_b^T \mathbf{v}^+ = \mathbf{0}$$
$$\nabla \mathbf{C}_u^T \mathbf{v}^+ \ge \mathbf{0}$$

Nonsmooth Multidomain Dynamics

Update formulation:
Constraint

$$\begin{bmatrix} \mathbf{M} & -\nabla \mathbf{C}_{b} & -\nabla \mathbf{C}_{u} \\ \nabla \mathbf{C}_{b}^{T} & \alpha_{b} & \mathbf{0} \\ \nabla \mathbf{C}_{u}^{T} & \mathbf{0} & \alpha_{u} \end{bmatrix} \begin{bmatrix} \mathbf{v}^{+} \\ \mathbf{\lambda}_{b} \\ \mathbf{\lambda}_{u} \end{bmatrix} - \begin{bmatrix} \mathbf{M}\mathbf{v} + \Delta t \mathbf{f}_{ext} \\ -\mathbf{C}_{b}(\mathbf{x})/\Delta t \\ -\mathbf{C}_{u}(\mathbf{x})/\Delta t \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{w} \end{bmatrix}$$
$$\mathbf{0} \le \mathbf{w} \perp \mathbf{\lambda}_{u} \ge \mathbf{0}$$
$$\mathbf{0} \le \mathbf{w} \perp \mathbf{\lambda}_{u} \ge \mathbf{0}$$
$$\begin{bmatrix} \nabla \mathbf{C}_{b}^{T} \mathbf{v}^{+} = \mathbf{0} \\ \nabla \mathbf{C}_{u}^{T} \mathbf{v}^{+} \ge \mathbf{0} \end{bmatrix} \xrightarrow{\nabla \mathbf{C}_{b}^{T} \mathbf{v}^{+} + \alpha_{b} \mathbf{\lambda}_{b} = \begin{bmatrix} -\mathbf{C}_{b}(\mathbf{x})/\Delta t \\ \nabla \mathbf{C}_{u}^{T} \mathbf{v}^{+} + \alpha_{u} \mathbf{\lambda}_{u} \ge -\mathbf{C}_{u}(\mathbf{x})/\Delta t \end{bmatrix}$$

Nonsmooth Multidomain Dynamics

• Update formulation:

$$\begin{cases} \begin{bmatrix} \mathbf{M} & -\nabla \mathbf{C}_{b} & -\nabla \mathbf{C}_{u} \\ \nabla \mathbf{C}_{b}^{T} & \boldsymbol{\alpha}_{b} & \mathbf{0} \\ \nabla \mathbf{C}_{u}^{T} & \mathbf{0} & \boldsymbol{\alpha}_{u} \end{bmatrix} \begin{bmatrix} \mathbf{v}^{+} \\ \boldsymbol{\lambda}_{b} \\ \boldsymbol{\lambda}_{u} \end{bmatrix} - \begin{bmatrix} \mathbf{M}\mathbf{v} + \Delta t \mathbf{f}_{ext} \\ -\mathbf{C}_{b}(\mathbf{x})/\Delta t \\ -\mathbf{C}_{u}(\mathbf{x})/\Delta t \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{w} \end{bmatrix}$$

Guaranteed positive definite

$$\nabla \mathbf{C}_b^T \mathbf{v}^+ = \mathbf{0} \qquad \longrightarrow \qquad \nabla \mathbf{C}_b^T \mathbf{v}^+ + \alpha_b \lambda_b = -\mathbf{C}_b(\mathbf{x})/\Delta t$$
$$\nabla \mathbf{C}_u^T \mathbf{v}^+ \ge \mathbf{0} \qquad \qquad \nabla \mathbf{C}_u^T \mathbf{v}^+ + \alpha_u \lambda_u \ge -\mathbf{C}_u(\mathbf{x})/\Delta t$$

2) Multiphysics modeling via constraints

Fluids

Rigid Bodies

Deformables

Granular Materials

78

ETS

Multiphysics Simulation Methods in Computer Graphics – EG 2025, London

- Uniform density constraint, as in PBD [Bodin et al., 2012]
 - Enforces incompressibility
 - SPH-based material interpolation

Constraint Fluids [Bodin et al., 2012]

- Uniform density constraint, as in PBD [Bodin et al., 2012]
 - Enforces incompressibility
 - SPH-based material interpolation
- Conversion to velocity-level

Density constraint on **position-level**

Constraint Fluids [Bodin et al., 2012]

- Uniform density constraint, as in PBD [Bodin et al., 2012]
 - Enforces incompressibility Ο
 - SPH-based material interpolation 0

Conversion to velocity-level

Density constraint on position-level

Density constraint on velocity-level

Constraint Fluids [Bodin et al., 2012]

- Uniform density constraint, as in PBD [Bodin et al., 2012]
 - Enforces incompressibility Ο
 - SPH-based material interpolation Ο
- **Conversion to velocity-level**

Density constraint on position-level

Density constraint on velocity-level

Constraint gradient

 $\nabla C_i^T \mathbf{v}^+ = \mathbf{0}$

Constraint Fluids [Bodin et al., 2012]

- Well-suited for multibody systems with contacts [Anitescu & Potra, 1997; Lacoursière 2007]
- Velocity-level effects directly supported
 - Joint actuation, kinetic friction, restitution See SIGGRAPH course by Andrews et al. [2022]

Andrews et al., 2022

- Well-suited for multibody systems with contacts [Anitescu & Potra, 1997; Lacoursière 2007]
- Velocity-level effects directly supported
 - Joint actuation, kinetic friction, restitution See SIGGRAPH course by Andrews et al. [2022]
 - PBD: include additional velocity-level solve [Barreiro et al., 2017; Müller et al., 2020]
 - **XPBI**: reformulate PBD to velocity-level

Andrews et al., 2022

3.3 Velocity-Level Formulation

- Well-suited for multibody systems with contacts [Anitescu & Potra, 1997; Lacoursière 2007]
- Velocity-level effects directly supported
 - Joint actuation, kinetic friction, restitution See SIGGRAPH course by Andrews et al. [2022]
 - PBD: include additional velocity-level solve [Barreiro et al., 2017; Müller et al., 2020]
 - XPBI: reformulate PBD to velocity-level
 - **NMD**: add target velocity \mathbf{v}_0 to constraint

Andrews et al., 2022

$$\nabla \mathbf{C}_b^T \mathbf{v}^+ + \alpha_b \lambda_b = -\mathbf{C}_b(\mathbf{x})/\Delta t \qquad \longrightarrow \qquad \nabla \mathbf{C}_b^T \mathbf{v}^+ + \alpha_b \lambda_b = \mathbf{v}_0 - \mathbf{C}_b(\mathbf{x})/\Delta t$$

Target velocity

- Well-suited for multibody systems with contacts [Anitescu & Potra, 1997; Lacoursière 2007]
- Velocity-level effects directly supported
- **Constraint-based adhesion** [Gascon et al., 2010]

Gascon et al., 2010

- Elastic solids [Servin et al., 2006]
 - FEM-based material discretization into tetrahedra T_i
 - Constraint derived from elastic strain energy U_i
 - Same as in XPBD [Macklin et al., 2016]

Servin et al., 2006

- Elastic solids [Servin et al., 2006]
 - FEM-based material discretization into tetrahedra T_i
 - Constraint derived from elastic strain energy U_i
 - Same as in XPBD [Macklin et al., 2016]

Servin et al., 2006

Elastic energy (general form):

Elastic strain energy for T_i :

$$U(\mathbf{x}) = \frac{1}{2} \mathbf{C}(\mathbf{x})^T \alpha^{-1} \mathbf{C}(\mathbf{x}) \longrightarrow \qquad U_i(\mathbf{x}) = \frac{1}{2} \left(V^{1/2} \varepsilon \right)^T \alpha^{-1} \left(V^{1/2} \varepsilon \right) \qquad V: \text{ tetrahedron volume} \\ \varepsilon: \text{ Green strain tensor constraints } \mathbf{C}(\mathbf{x}) \qquad constraints \mathbf{C}(\mathbf{x}) = V^{1/2} \varepsilon$$

- Elastic solids [Servin et al., 2006]
- **Rods** [Servin and Lacoursière, 2008]
 - Kirchhoff rod model
 - Geometric stiffness for improved accuracy and stability [Tournier et al., 2015; Andrews et al., 2017]

Servin et al., 2010

- Elastic solids [Servin et al., 2006]
- Rods [Servin and Lacoursière, 2008]
- Granular Materials
 - Nonsmooth DEM model [Servin et al., 2014]
 - Elastoplastic materials via plasticity theory [Nordberg and Servin, 2018]
 - Also: XPBI, PBD on velocity-level [Yu et al., 2024]

Nordberg and Servin, 2018

3.3 Velocity-Level Formulation

- Elastic solids [Servin et al., 2006]
- Rods [Servin and Lacoursière, 2008]
- Granular Materials
- Suction [Bernardin et al., 2022]
 - Passive suction between elastic solids
 - Constraint-based friction, contact and pressure

Bernardin et al., 2022

92

Multiphys

Multiphysics Simulation Methods in Computer Graphics - EG 2025, London

2) Multiphysics modeling via constraints

Fluids

Rigid Bodies

Deformables

Granular Materials

- Strong similarities of NMD and XPBD
 - Same constraint relaxation [Servin et al., 2006]

- Strong similarities of NMD and XPBD
 - Same constraint relaxation [Servin et al., 2006]
 - Yields similar formulation
 - But: XPBD employs Quasi-Newton method (nonlinear)

$$\begin{bmatrix} \mathbf{M} & -\nabla \mathbf{C}_b \\ \nabla \mathbf{C}_b^T & \alpha_b \end{bmatrix} \begin{bmatrix} \mathbf{v}^+ \\ \mathbf{\lambda}_b \end{bmatrix} = \begin{bmatrix} \mathbf{M}\mathbf{v} + \Delta t \mathbf{f}_{ext} \\ -\mathbf{C}_b(\mathbf{x})/\Delta t \end{bmatrix}$$

NMD system (only bilateral constraints)

$$\begin{bmatrix} \mathbf{M} & -\nabla \mathbf{C}_b \\ \nabla \mathbf{C}_b^T & \alpha_b / \Delta t^2 \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x} \\ \Delta \boldsymbol{\lambda} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ * \end{bmatrix}$$

XPBD system: one Newton iteration (only bilateral constraints)

3.3 Velocity-Level Formulation

- Different time discretization
 - (X)PBD: implicit Euler Ο
 - × high numerical dissipation
 - increased stability, beneficial for interactive applications

PBD velocity and position update:

$$\mathbf{p} = solver(\mathbf{x}, \mathbf{v}, \Delta t)$$
$$\mathbf{v}^{+} = \frac{\mathbf{p} - \mathbf{x}}{\Delta t}$$
$$\mathbf{x}^{+} = \mathbf{p}$$

NMD: semi-implicit (symplectic) Euler Ο ✓ improved energy conservation X lower stability

NMD velocity and position update:

 $\mathbf{v}^+ = solver(\mathbf{x}, \mathbf{v}, \Delta t)$ $\mathbf{x}^+ = \mathbf{x} + \Delta t \mathbf{v}^+$

- Velocity-level effect support (joint actuation, kinetic friction, restitution)
 - **NMD**: Supported in formulation
 - **PBD**: Requires special treatment [Barreiro et al., 2017; Müller et al., 2020]

- Velocity-level effect support (joint actuation, kinetic friction, restitution)
 - **NMD**: Supported in formulation
 - PBD: Requires special treatment [Barreiro et al., 2017; Müller et al., 2020]
 - **XPBI**: Uses **velocity-level reformulation** of XPBD [Yu et al., 2024]
 - For accurate deformation gradient F⁺
 - Resembles NMD with Schur-Complement and Projected Gauss-Seidel solver

Modeling clay-like material pressed through a cylindrical mold in XPBI [Yu et al., 2024]

Multiphysics Simulation Methods in Computer Graphics – EG 2025, London

Conclusion

Part I: Constraint-Based Multiphysics Modeling

- Flexible, Lagrangian domain discretization
- Materials and phenomena modeled using constraints
 - Unified modeling framework
 - Strongly coupled materials and phenomena
- Position-level and velocity-level formulations
 - Can be combined based on requirements

Upcoming talks:

Part II: Energy-Based Multiphysics Modeling

Part III: Lagrangian Point-Based, Eulerian and Hybrid Methods

Yu et al., 2024

End of Part I of III

Thank you!

Do you have any questions?

Simulated (left) vs. real excavator digging in PBD soil [Holz and Galarneau, 2018]

Viscoplastic paint on cloth in XPBI [Yu et al., 2024]

