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Introduction

e Abundance of physics simulation methods
o Physical materials
o Physical phenomena

e Multiphysics simulation

o Interacting materials and phenomena

e Applications in many industries
o Entertainment
o Engineering

o Training

Robotic vacuum cleaner colliding with carpet [Fernandez-Ferandez et al., 2024]
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Introduction

e How to classify multiphysics simulation methods?
o Domain discretization

Lagrangian Eulerian
(ex: particles) (ex: grid)
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Introduction

e How to classify multiphysics simulation methods?

o Domain discretization
o Behavior and interaction modeling

-

Unified Models Coupling Techniques

Monolithic modeling frameworks, Techniques for two-way coupling of

yielding strong two-way coupling multiple models or discretizations
Multiphysics Simulation Methods in Computer Graphics — EG 2025, London 1 Introduction
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Introduction

Lagrangian Point-Based
Methads (Sec. 2)

Eulerian & Hybrid Methods
(See. 3)

Energy-Based Modeling
(See. 4)

Consiraini-Based Modeling
(Sec. 5)
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Structure of the Talk Series

e Part I: Constraint-Based Multiphysics Modeling

o Flexible, Lagrangian domain discretization
o Behavior and interactions modeled using constraint functions

Robotic hand grasping an elastic cube
[Fernandez-Fernandez et al., 2024]
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Structure of the Talk Series

e Part I: Constraint-Based Multiphysics Modeling
e Part ll: Energy-Based Multiphysics Modeling

o Equally flexible domain discretization
o Behavior and interactions modeled using energy functions

Robotic hand grasping an elastic cube
[Fernandez-Fernandez et al., 2024]
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Structure of the Talk Series

e Part I: Constraint-Based Multiphysics Modeling
e Part Ill: Energy-Based Multiphysics Modeling
e Part lll: Lagrangian Point-Based, Eulerian and Hybrid Methods

o Lagrangian, Eulerian and Hybrid discretizations
o Simulated domain treated as a continuum

Robotic hand grasping an elastic cube
[Fernandez-Fernandez et al., 2024]
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A Unified Modeling Framework

e Newton’s 2" [aw of motion
Mx = f(x)

X = [xq, .., Xp]T  Generalized coordinates
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A Unified Modeling Framework

e Newton’s 2" [aw of motion
Mx = f(x)

X = [xq, .., Xp]T  Generalized coordinates

e Constraints as unified modeling tool
o |dea: directly model the desired behavior
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A Unified Modeling Framework

e Newton’s 2" [aw of motion
Mx = f(x)

X = [xq, .., Xp]T  Generalized coordinates

e Constraints as unified modeling tool X v
: : : Xj Xj
o |dea: directly model the desired behavior A _}7——
, o
Cb (X) =0 Bilateral constraints '/"'~ d '\\_/'
\ I' X ~
~-Xi l

.......

C=[0(x),.., Cx)]"

Distance constraint
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A Unified Modeling Framework

e Newton’s 2" [aw of motion
Mx = f(x)

X = [xq, .., Xp]T  Generalized coordinates

e Constraints as unified modeling tool
o |dea: directly model the desired behavior

Cb (X) =0 Bilateral constraints

Cu (X) > O Unilateral constraints

C=[(X),..,C®]"
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A Unified Modeling Framework

e Newton’s 2" [aw of motion
Mx = f(x)

X = [xq, .., Xp]T  Generalized coordinates

e Constraints as unified modeling tool
o |dea: directly model the desired behavior

Cb (X) =0 Bilateral constraints

Cu (X) > O Unilateral constraints

C=[(X),..,C®]"
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A Unified Modeling Framework

. Discretization

1) Discretization of equations of motion

Mx = f(x)
C,(x) =0 >
c,x)=0

Equations of motion

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London
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A Unified Modeling Framework: Discretization

1) Discretization of equations of motion

YA
Mx = f(x)
— >
Cb (X) 0 Discretize in
C,x)=0 space and time

Equations of motion




A Unified Modeling Framework: Discretization

1) Discretization of equations of motion

e [wo popular approaches

o Position-level formulation: Position Based Dynamics
o Velocity-level formulation: Nonsmooth Multidomain Dynamics

e \ery stable, even under coarse discretizations and large time steps
o Good choice for real-time and interactive applications

Mx = f(x) o
C,(x)=0 > %

c,x)=0

h -
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A Unified Modeling Framework: Multiphysics Modeling

2) Multiphysics Modeling
e \What do we need?

e (Constraint function definition

Cb(X) =0
C,x)=0

Constraint functions Multiple material domains in interaction

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London 3.1 A Unified Modeling Framework ( U 26



A Unified Modeling Framework

Cb(X) =0
C,x)=0

Criuid

> Celastoplastic

S —

Cviscoelastic
L

Material constraints

Multiple material domains
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A Unified Modeling Framework

Water H Wood

//M'eta.%g Gioth +-{water
o

Material interactions

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London

Water
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Boundary

Cfluid/solid "‘I-I

Csolid/solid n

Interaction
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: |
: I
: Mg = £(x) |
Unified modeling framework | C,(x)=0 —p !
| C.(x) =0 !
i Equations of motion Simulated material domains :
L e o o o e o e - |

1) Discretization of
equations of motion

2) Multiphysics modeling
via constraints

-~

Rigid Bodies Deformables Granular Materials
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Unified modeling framework

1) Discretization of
equations of motion

2) Multiphysics modeling
via constraints

Mx = f(x)
C,x)=0 —p
c,x)=0

Equations of motion Simulated material domains

Deformables
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Unified modeling framework

Equations of motion Simulated material domains

1) Discretization of
equations of motion

via constraints

Deformables
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Position Based Dynamics

Rigid car with flexible tires [MUller et al., 2020] Plastic modeling clay [Yu et al., 2024] Deformed cloth [Bender et al., 2014]

(’

Position Based Fluids [Macklin and Mller, 2013] Rod forming plectonemes [Deul et al., 2018] Cream [Barreiro et al., 2017]
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Position Based Dynamics: Discretization

1. Prediction with forward Euler:

e Predictor-Corrector scheme [Muiller et al., 2006]

. . - — 2
1. Predict: Predict unconstrained positions P = X; +Atv; + At
2. Correct: Correct constrained positions in solver

f(x;)

m;

e Different solver types:

o lterative, e.g., Gauss-Seidel, or Jacobi

. —C
o Direct [Goldenthal et al., 2007; Deul et al., 2018] (p)

T OB TR T )

Correction along constraint gradient
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Position Based Dynamics: Discretization

1. Prediction with forward Euler:

e Predictor-Corrector scheme [Muiller et al., 2006]

1. Predict: Predict unconstrained positions pi = X; + Atv; + At?
2. Correct: Correct constrained positions in solver

f(x;)

m;

2.Solver: ..
e Different solver types: Ap —[M-T9¢ (p)
o lterative, e.g., Gauss-Seidel, or Jacobi r—C()
o Direct [Goldenthal et al., 2007; Deul et al., 2018] A booooth P

~ VC(p)"™™-1VC(p)

Correction along constraint gradient

Need: Constraint error and gradient
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Position Based Dynamics: Discretization

e Predictor-Corrector scheme [Muiller et al., 2006]

1. Predict: Predict unconstrained positions
2. Correct: Correct constrained positions in solver

o—=~ V4 S
......... g N AN A & N\
,,,,,,, N TN S AN Vi T J 1
/ /3 \ i/ Y \ I : -‘l =' """" S ]
I e 1| e--t--- - ! @---"""
I\ oy T-. ,; I\ d /-‘: / \ I \\ X: ,l
\, N\,
\‘~__¢X _____ / Sear? Sel? ! \\ xl /l \ ‘],/
Sea’ S==
Ay >0 A, =0 =0

Cu(®) = ||x; — x| -

......
........................

Cap correction for unilateral constraints

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London

1. Prediction with forward Euler:

f(x;)

.= X; + Atv; + At?
pl l l mi

'“}-\-i— _C(p)
=T VC(p)TMIVC (p)

Correction along constraint gradient

3.2 Position-Level Formulation
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Position Based Dynamics: Discretization

1. Prediction with forward Euler:

e Predictor-Corrector scheme [Muiller et al., 2006]

. . - — 2
1. Predict: Predict unconstrained positions P = X; +Atv; + At
2. Correct: Correct constrained positions in solver

f(x;)

m;

e Different solver types:

o lterative, e.g., Gauss-Seidel, or Jacobi

. —C
o Direct [Goldenthal et al., 2007; Deul et al., 2018] (p)

T OB TR T )

o 3. Update VGIOCity from pOSitiOﬂ Chaﬂge Correction along constraint gradient

o No extrapolation, yields high stability ittt '
o But some limitations (more later)

3. Update velocity and position:

:Pi—Xi
At
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Position Based Dynamics: Discretization

Limitations of original PBD

1. Time-step and iteration dependence
2. Resolution dependence

less iterations more iterations

Increased stiffness with larger iteration count in original PBD [Bouaziz et al., 2014]
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Position Based Dynamics: Discretization

Limitations of original PBD

1. Time-step and iteration dependence
2. Resolution dependence

1. overcome by eXtended PBD (XPBD) [vackin et al., 2016] Bouaziz et al., 2014

o Derived from elastic energy potential U [Servin et al., 2006]

Elastic energy: Original PBD: XPBD:

~C(p) o —CEa/Ara]

...............

1 —
Up) =5 C®) L ®) A =MV (p)

: compliance

A=A+ AN
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Position Based Dynamics: Discretization

Limitations of original PBD

1. Time-step and iteration dependence ‘ ‘ ‘ 1‘

2. Resolution dependence

1. overcome by eXtended PBD (XPBD) mackin et al., 2016] Bouaziz et al., 2014

o Derived from elastic energy potential U [Servin et al., 2006]

less iterations more iterations less iterations more iterations

=
Original PBD

@ gf-g Multiphysics Simulation Methods in Computer Graphics — EG 2025, London 3.2 Position-Level Formulation (0 ’ U 40
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Position Based Dynamics: Discretization

Limitations of original PBD

1. Time-step and iteration dependence
2. Resolution dependence

1. overcome by eXtended PBD (XPBD) Mackin et al., 2016]
2. overcome by Bender et al. (2014)

o Continuous, deformable materials
o Tetrahedral volume elements (FEM-style)
o Position-level constraint of the strain energy

Bender et al., 2014
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Unified modeling framework

1) Discretization of
equations of motion

2) Multiphysics modeling
via constraints

Mx = f(x)
C,x)=0 —p
c,x)=0

Equations of motion Simulated material domains

Deformables

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London

Granular Materials
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Unified modeling framework

Equations of motion Simulated material domains

1) Discretization of
equations of motion

via constraints

Deformables
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Position Based Fluids [Macklin and Mller, 2013]

e Density constraint C; [Bodin et al., 2012] P !

o Models incompressible fluid ' Po
o Enforces uniform reference density p, at x;
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Position Based Fluids [Macklin and Mller, 2013]

e Density constraint C; [Bodin et al., 2012]

o Models incompressible fluid
o Enforces uniform reference density p, at x;

e SPH-based material interpolation

o Smoothing kernel W with radius h
-

Macklin and Muller, 2013



Position Based Fluids [Macklin and Miller, 2013

e Density constraint C; Bodin etal., 2012] P L
o Models incompressible fluid L Po B
o Enforces uniform reference density p, at x; .

e SPH-based material interpolation p; = ij W(x; — X, h)
o Smoothing kernel W with radius h j=1

e Constraint gradient for inclusion in PBD

VCl' = —z mj LVVV:;(XL' — Xj, h)
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Position Based Fluids [Macklin and Miller, 2013

e Density constraint C; [Bodin et al., 2012]

o Models incompressible fluid
o Enforces uniform reference density p, at x;

e Extensions

o Multi-phase fluids & smoke
[Macklin et al., 2014]

(-

Macklin et al., 2014
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Position Based Fluids [Macklin and Mller, 2013]

e Density constraint C; [Bodin et al., 2012]

o Models incompressible fluid
o Enforces uniform reference density p, at x;

e Extensions

o  Multi-phase fluids & smoke
[Macklin et al., 2014]

o Viscous fluids & phase transitions
[Takahashi et al., 2014]

Takahashi et al., 2014
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Position Based Fluids [Macklin and Miller, 2013

e Density constraint C; [Bodin et al., 2012]

o Models incompressible fluid
o Enforces uniform reference density p, at x;

e Extensions

o  Multi-phase fluids & smoke
[Macklin et al., 2014]

o Viscous fluids & phase transitions
[Takahashi et al., 2014]

o Strong surface tension [xing et al., 2022]

Xing et al., 2022
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Position Based Fluids [Macklin and Mller, 2013]

e Density constraint C; [Bodin et al., 2012]

o Models incompressible fluid
o Enforces uniform reference density p, at x;

e [Extensions
o Multi-phase fluids & smoke
[Macklin et al., 2014]
o Viscous fluids & phase transitions
[Takahashi et al., 2014]
Strong surface tension [xing et al., 2022]
Viscoelastic and elastoplastic fluids [Barreiro et al., 2017]
m Hybrid velocity-based / position-based solver
m Enforces both position-level and velocity-level constraints

Barreiro et al., 2017
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Position Based Rigid Bodies

e PBD extended to rigid bodies [Deul et al., 2014]

o Introduce rotations q;
o Scalar particle mass m; becomes rigid body mass matrix M;
o Efficient representation

Rigid elk collides with rubber ducky [Deul et al., 2014]
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Position Based Rigid Bodies

e PBD extended to rigid bodies [Deul et al., 2014]

(@]

o

(@]

Introduce rotations q;

Scalar particle mass m; becomes rigid body mass matrix M;

Efficient representation

Ax
O -0
my m,

Ax, AX,

— —

-0
my ms,

Correction of particles

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London

Correction of rigid bodies [Miiller et al., 2020]

3.2 Position-Level Formulation
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Position Based Rigid Bodies

e PBD extended to rigid bodies [Deul et al., 2014]

e Compatible with PBD particles

o Strong two-way coupling
o Shows flexibility of PBD discretization

e Joints and friction [Deul et al., 2014]

e Restitution [Mdller et al., 2020]
o Via additional velocity-level solve

Rigid car with deformable tires drives over obstacles [Muller et al., 2020]
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Position Based Deformables

e Mostly tetrahedral/triangular discretization

e Deformable material constraints

Constrain strain energy [Bender et al., 2014]
Constrain strain tensor [Muiller et al., 2015]

o Constraint derived from elastic energy potential
[Macklin et al., 2016; Francu et al., 2017]

o Shape matching [Chentanez et al., 2016]

Ty,

Newton’s method XPBD

Cloth simulation using strain energy constraint [Bender et al., 2014]

Hookean, isotropic cantilever beam [Macklin et al., 2016]
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Position Based Deformables

e Mostly tetrahedral/triangular discretization 2x slower

e Deformable material constraints

e Support for...
o Hookean materials
[Bender et al., 2014; Macklin et al., 2016; Francu et al., 2017] _ :

o Hyperelastic materials [Bender et al., 2014; Ne Heokean SafiCVEREN T Kirchhoff
Macklin and Muller, 2021; Ton-That et al., 2022; Chen et al., 2024]
o) Hig her-order finite elements Hyperelastic materials under compression [Bender et al., 2014]

[Saillant et al., 2024]
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Position Based Rods

e (Co-dimensional structure
o ldeal for hair, fur, vegetation, cables, ropes, ...

e (osserat rod theory in PBD [Umetani et al., 2015]
o Elastic rods with stretching, bending and torsion

o Consistent material frames through addedi ghost points |

Ghost points (cyan) for defining rod material frames [Umetani et al., 2015] Squishy ball hits a wall [Umetani et al., 2015]
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Position Based Rods

e (Co-dimensional structure
o ldeal for hair, fur, vegetation, cables, ropes, ...

e (osserat rod theory in PBD [Umetani et al., 2015]

e Extensions

Material frames via quaternions [Kugelstadt and Schémer, 2016]
High material stiffness via direct solver [Deul et al., 2018]

Volumetric deformations with volume conservation
[Angles et al., 2019]

Twisted rod forming plectonemes [Deul et al., 2018]

v
iy

LA

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London Muscles modeled using volumetric rods [Angles et al., 2019] 57




Position Based Granular Materials

e [wO common approaches
o DEM-based & Continuum-based

e DEM-based

o PBD soil particles
o Particle interaction constraints

m Viscoelastic collisions
[Holz, 2014; Macklin et al., 2016; Francu et al., 2017]
Coulomb friction [Macklin et al., 2014; Holz, 2014]

Cohesion [Holz and Galarneau, 2018]

Excavator digging in clay type soil [Holz and Galarneau, 2018]
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Position Based Granular Materials

e (Continuum-based

o Plasticity theory in PBD [Yu et al., 2024]
m eXtended Position-Based Inelasticity (XPBI)
o Viscoplastic and elastoplastic materials
m  Strongly coupled sand, water, snow, metal, and foam
o Employs a hybrid grid-particle discretization (cf. MPM)
m  Well-suited for large deformations and fracture

¢ Challenge: -____Sandcastle washed away by water in XPBI [Yu et al., 2024]
m  Needs accurate estimates of deformation gradient{F *i
m Depends on future velocity gradient{Vv* pmmnm=my
: - iFti=F + At:Vv" F
m Approach: Reformulate XPBD on the velocity-level . I
e Next slide... Calculation of future

deformation gradient F*
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XPBD vs. XPBI (velocity-level)

XPBD:

1. Predict position:

p =X+ Atv + At2M ™ (x)

2. Correct positions iteratively in solver:

B —C(p) — a/At? X

T VC(p)TM~IVC(p) + a/At?
A=A+ AA

Ap = M~VC(p)Ar
pep+Ap

3. Update velocity:

V « (p — X)/At

X<p
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XPBD vs. XPBI (velocity-level)

XPBD: XPBI (velocity-level XPBD):
1. Predict position: 1. Predict velocity:

ipi=x + Atv + A2M ™~ (x) fvie v+ AtM (%)
2. Correct positions iteratively in solver: 2. Correct velocities iteratively in solver:

—C(p) — a/At? 2

i AL = | Y CR— . 5 |
! VC(p)TM~1VC(p) + a/At? i i VC(x + Atv)TM~1VC(x + Atv) + a/At?
i A A4 AN | ! A A+ AL |
I U —
: Ap = M~VC(p)ar | :  Av = MTVCEE AT :
| p<p+Ap | i i vV<vFAv
3. Update velocity from new position: 3. Update position from new velocity:
v (p—x)/At X « X + Atv
X<p
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Unified modeling framework

Equations of motion Simulated material domains

1) Discretization of
equations of motion

via constraints

Deformables
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Unified modeling framework

1) Discretization of
equations of motion

2) Multiphysics modeling
via constraints

Mx = f(x)
C,x)=0 —p
c,x)=0

Equations of motion Simulated material domains

Deformables

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London

Granular Materials
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Unified modeling framework

1) Discretization of
equations of motion

via constraints

Deformables
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Velocity-Level Formulation

Adhesive jello [Gascon et al., 2010] Chain with heavy weight [Andrews et al., 2022] Constraint Fluids [Bodin et al., 2012]

Rods wrapped around rigid beam [Servin et al., 2010] Constraint-based suction [Bernardin et al., 2022]
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Velocity-Level Formulation: Nonsmooth Dynamics

e Nonsmooth, rigid body dynamics modeling [Moreau, 1963; Moreau, 1985]
o  Well-suited for hard, unilateral interactions, e.g., contacts

e Applied in numerous popular rigid body dynamics methods [Bender et al., 2014]

.o .o V+ - v
Mx = f(x) Mx =~ = foyr + £
At
e
C,(x) = 0 vc},,’v+ =0
C,(x)=>0 ch H> 0
Equations of motion Equations of motion on velocity level
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Velocity-Level Formulation: Nonsmooth Dynamics

e Nonsmooth, rigid body dynamics modeling [Moreau, 1963; Moreau, 1985]
o  Well-suited for hard, unilateral interactions, e.g., contacts

e Applied in numerous popular rigid body dynamics methods [Bender et al., 2014]

o Lagrange multiplier method
o Linear Complementarity Problem (LCP) formulation

Equations of motion on velocity level

n

Atf, = —VC,A;, — VC, A, |

Constraint impulses as
Lagrange multipliers

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London

1

(T M
o
vcr

_VCb _ch v+
0 0 ||a,]-
0 0 Ay

0O<w LA, =0

Mv + Atfo ] [0
0 =10
le

Mixed Linear Complementarity Problem (MLCP)

3.3 Velocity-Level Formulation
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Velocity-Level Formulation: Nonsmooth Dynamics

e Nonsmooth, rigid body dynamics modeling [Moreau, 1963; Moreau, 1985]
o  Well-suited for hard, unilateral interactions, e.g., contacts

e Applied in numerous popular rigid body dynamics methods [Bender et al., 2014]

Contact example:
Impact Separation
\\ ’ \\ ’ \\\ p ! ~,
1 1] i I v
I ) I y i
‘\ I* l' ‘\ I*\ Il
4 'I \\ 4

s ’
..........................

(

M
o
vcr

Slack variable: constraint velocity

—VC, -VC,]1[
0 0
0 0

Mixed Linear Complementarity Problem (MLCP)

(’9 U68

3.3 Velocity-Level Formulation



Velocity-Level Formulation: Nonsmooth Dynamics

e Nonsmooth, rigid body dynamics modeling [Moreau, 1963; Moreau, 1985]

e Applied in numerous popular rigid body dynamics methods [Bender et al., 2014]

e Different solver types

lterative, e.g., Gauss-Seidel, or Jacobi
m Favorable efficiency
Direct, e.g., pivoting solvers
m l|deal for high stiffness/mass ratios
Hybrid (direct/iterative)
m  Combined benefits

©)

O

©)

Hybrid direct/iterative solver in Unity Physics

©




Nonsmooth Multidomain Dynamics

e Limitations

1. Only hard constraints, e.g., rigid bodies with hard contacts
2. Position “drift” at velocity-level

Andrews et al., 2022
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Nonsmooth Multidomain Dynamics

e [imitations

1. Only hard constraints, e.g., rigid bodies with hard contacts

/hard o . Cx)=0 — VC'v* =0
2. Position “drift” at velocity-level

e (Generalization to Nonsmooth Multidomain Dynamics (NMD)
1. Multiple material domains: model more than rigid bodies

-
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Nonsmooth Multidomain Dynamics

e [imitations

1. Only hard constraints, e.g., rigid bodies with hard contacts

/hard o . Cx)=0 — VC'v* =0
2. Position “drift” at velocity-level

e (Generalization to Nonsmooth Multidomain Dynamics (NMD)

1. Multiple material domains: model more than rigid bodies U(x) = %C(x)%‘LC(x)

m  “Soften” the constraints [Servin et al., 2006]

m Robust, physically meaningful parametrization
e Constraints as stiff limits of energy potentials U (x)
e Compliance matrix «
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Nonsmooth Multidomain Dynamics

e [imitations

1. Only hard constraints, e.g., rigid bodies with hard contacts

/hard o . Cx)=0 — VC'v* =0
2. Position “drift” at velocity-level

e (Generalization to Nonsmooth Multidomain Dynamics (NMD)
1. Multiple material domains: model more than rigid bodies U(x) = %C(X)Tf&-:fC(x)

m “Soften” the constraints [Servin et al., 2006] S

m Robust, physically meaningful parametrization Cx) +[}_‘9‘.= 0
e Constraints as stiff limits of energy potentials U (x) C(x*) ~CX) +HAVCT v+
e Compliance matrix a
2. | Constraint stabilization l
m Deals with position “drift” problem vCTy+ 'HO(}\ié “Cx) /AL
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Nonsmooth Multidomain Dynamics

e Update formulation:

([M  —VC, —VC.][v*] [Mv+Atf,.] [O
ve; 0 0 |[[2,]- 0 =0
1lver o0 0 ||\ 0 w
VClvt =0
VCIvt >0
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Nonsmooth Multidomain Dynamics

e Update formulation:

Constraint Relaxation

M —VC, —VC,|[y+
VC%w p 0 Ab —

Mv + Atfoy 0
—Cp(x)/At}| = [ ‘

1ver i o o, | Ay —C,(x)/At w
L O0<w 12,20
Constraint Stabilization
vClvt = VCIv* HapApi=i—Cp (x) /At |

VCIvt >0

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London

VCIvt +Hay,A, ZE—Cu(x)/AtE
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Nonsmooth Multidomain Dynamics

e Update formulation:

M  -VC, -VC,[v*] [Mv+Atf..] ro
VG i 0|2 |- —-Co(x)/AL | = [0‘
ver 1o o, || [ Ay —C,(x)/At w
Guaranteed positive definite
C o=w LA, >0
VC£V+ = VCI’I;V+ + (XbAb = —Cb(X)/At
 —
VCIvt >0 VCIvt + a A, = —Cy(x)/At
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Unified modeling framework

1) Discretization of
equations of motion

2) Multiphysics modeling
via constraints

Mx = f(x)
C,x)=0 —p
c,x)=0

Equations of motion Simulated material domains

Deformables

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London

Granular Materials
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Unified modeling framework

1) Discretization of
equations of motion

via constraints

Deformables

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London




Velocity Based Fluids

e Uniform density constraint, as in PBD [Bodin et al., 2012]

o Enforces incompressibility
o SPH-based material interpolation

Constraint Fluids [Bodin et al., 2012]

3.3 Velocity-Level Formulation (0 ’ U 79




Velocity Based Fluids

e Uniform density constraint, as in PBD [Bodin et al., 2012]

o Enforces incompressibility
SPH-based material interpolation

e Conversion to velocity-level

1 n
Ci = —Zm] W(Xi —Xj,h) -1
Poj=1

L )
Y

Pi

Density constraint on
position-level

Constraint Fluids [Bodin et al., 2012]
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Velocity Based Fluids

e Uniform density constraint, as in PBD [Bodin et al., 2012]

o Enforces incompressibility
SPH-based material interpolation

e Conversion toivelocity-level

n P n
1 1d i 1 r
C; = —Z m;W(x; —x;,h) -1 —> {piCi= —z mVWA(x; — X;, h)n]{(v;—v;)
Po 4 i t; Po &~ e
j=1 === Jj=1
L Y J n.: = Xi—Xj
o U ]
Density constraint on Density constraint on
position-level velocity-level

Constraint Fluids [Bodin et al., 2012]
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Velocity Based Fluids

e Uniform density constraint, as in PBD [Bodin et al., 2012]

o Enforces incompressibility
SPH-based material interpolation

e Conversion to velocity-level

Constraint gradient

1 = d i 1 ‘ T: !
Ci :—Zm] W(Xi —Xj,h) -1 —_— E Ci :ip_ m] VW(XL' —Xj,h)niﬁL(Vi—Vj) =0
L )
Y . |
pi VClivt =0
Density constraint on Density constraint on
position-level velocity-level

Constraint Fluids [Bodin et al., 2012]
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Velocity Based Rigid Bodies

e \Well-suited for multibody systems with contacts
[Anitescu & Potra, 1997; Lacoursiere 2007]

e \elocity-level effects directly supported

o Joint actuation, kinetic friction, restitution
See SIGGRAPH course by Andrews et al. [2022]

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London

Andrews et al., 2022

3.3 Velocity-Level Formulation
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Velocity Based Rigid Bodies

e \Well-suited for multibody systems with contacts
[Anitescu & Potra, 1997; Lacoursiere 2007]

e \elocity-level effects directly supported

o Joint actuation, kinetic friction, restitution
See SIGGRAPH course by Andrews et al. [2022]

m PBD: include additional velocity-level solve
[Barreiro et al., 2017; MUller et al., 2020]

m  XPBI: reformulate PBD to velocity-level

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London

Andrews et al., 2022

3.3 Velocity-Level Formulation

® 17 -



Velocity Based Rigid Bodies

e \Well-suited for multibody systems with contacts
[Anitescu & Potra, 1997; Lacoursiere 2007]

e \elocity-level effects directly supported

o Joint actuation, kinetic friction, restitution
See SIGGRAPH course by Andrews et al. [2022]

m PBD: include additional velocity-level solve
[Barreiro et al., 2017; MUller et al., 2020]

m  XPBI: reformulate PBD to velocity-level
NMD: add target velocity v, to constraint Andrews et al., 2022

VCZV+ + ab}\b = —Cb(X)/At — VCZV+ + ab}\b =iVpi— Cb(X)/At

Target velocity
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Velocity Based Rigid Bodies

e \Well-suited for multibody systems with contacts
[Anitescu & Potra, 1997; Lacoursiere 2007]

e \elocity-level effects directly supported

e Constraint-based adhesion [Gascon et al., 2010]

Gascon et al., 2010

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London

3.3 Velocity-Level Formulation
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Velocity Based Deformables

e Elastic solids [Servin et al., 2006]

o FEM-based material discretization into tetrahedra T;

o Constraint derived from elastic strain energy U;
m  Same as in XPBD [Macklin et al., 2016]

Servin et al., 2006
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Velocity Based Deformables

e Elastic solids [Servin et al., 2006]

o FEM-based material discretization into tetrahedra T;

o Constraint derived from elastic strain energy U;
m  Same as in XPBD [Macklin et al., 2016]

Servin et al., 2006

Elastic energy (general form): Elastic strain energy for T; :
U(X) — EC(X)TO(_I C(X) U. (X) _ l (Vl/ZE )T(X_l {6;17-2-;3 V' tetrahedron volume
o 2 ' L ) i € : Green strain tensor
constraints C(x) constraints C(x) = V1/2%¢
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Velocity Based Deformables

e FElastic solids [Servin et al., 2006]

e Rods [Servin and Lacoursiére, 2008]

o  Kirchhoff rod model
o Geometric stiffness for improved accuracy
and stability [Tournier et al., 2015; Andrews et al., 2017]

Servinet al., 2010
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Velocity Based Deformables

e [Elastic solids [Servin et al., 2006]
e Ro0ds [Servin and Lacoursiére, 2008]

e Granular Materials

o Nonsmooth DEM model [Servin et al., 2014]

o Elastoplastic materials via plasticity theory
[Nordberg and Servin, 2018]
] Also: XPBI, PBD on velocity-level [Yu et al., 2024]

Nordberg and Servin, 2018
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Velocity Based Deformables

e [Elastic solids [Servin et al., 2006]
e Ro0ds [Servin and Lacoursiére, 2008]
e Granular Materials

e Suction [Bernardin et al., 2022]

o Passive suction between elastic solids
o Constraint-based friction, contact and pressure

Bernardin et al., 2022
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Unified modeling framework

1) Discretization of
equations of motion

via constraints

Deformables

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London




Mx = f(x)

Unified modeling framework C,(x)=0 —Pp
c,x)=0
Equations of motion Simulated material domains

1) Discretization of
equations of motion

2) Multiphysics modeling
via constraints

Deformables Granular Materials
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Relation to Position Based Dynamics

e Strong similarities of NMD and XPBD

o Same constraint relaxation [Servin et al., 2006]
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Relation to Position Based Dynamics

e Strong similarities of NMD and XPBD

o Same constraint relaxation [Servin et al., 2006]
o Yields similar formulation
m But: XPBD employs Quasi-Newton method (nonlinear)

M —VCy|[vH] _ [Mv+ Atfey M —VC |Ax] _ [0
vel by iy —C,(x)/At Vel tay, /At% (AL *
NMD system XPBD system: one Newton iteration
(only bilateral constraints) (only bilateral constraints)
Multiphysics Simulation Methods in Computer Graphics — EG 2025, London 3.3 Velocity-Level Formulation
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Relation to Position Based Dynamics

e Different time discretization
o  (X)PBD: implicit Euler
X high numerical dissipation
V increased stability, beneficial for interactive applications

o NMD: semi-implicit (symplectic) Euler
v improved energy conservation
X lower stability

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London

PBD velocity and position update:

p = solver(x,v,At)
+_P~X

\'%

NMD velocity and position update:

vt = solver(x,v, At)
xt =x+ Atv?
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Relation to Position Based Dynamics

e \elocity-level effect support (joint actuation, kinetic friction, restitution)

o NMD: Supported in formulation
o PBD: Requires special treatment [Barreiro et al., 2017; Miiller et al., 2020]
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Relation to Position Based Dynamics

e \elocity-level effect support (joint actuation, kinetic friction, restitution)

o NMD: Supported in formulation
o PBD: Requires special treatment [Barreiro et al., 2017; Miiller et al., 2020]
XPBI: Usesivelocity-level reformulationiof XPBD [Yu et al., 2024]

F* =F + At;Vv'F

m For accurate deformation gradient F*
m  Resembles NMD with Schur-Complement and Projected Gauss-Seidel solver
' 1

Modeling clay-like material pressed through a cylindrical mold in XPBI [Yu et al., 2024]
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Conclusion

Part |: Constraint-Based Multiphysics Modeling

o Flexible, Lagrangian domain discretization

o Materials and phenomena modeled using constraints
m  Unified modeling framework
m  Strongly coupled materials and phenomena

o Position-level and velocity-level formulations
m Can be combined based on requirements

Upcoming talks:

Part Il: Energy-Based Multiphysics Modeling

Yu et al., 2024

Part lll: Lagrangian Point-Based, Eulerian and Hybrid Methods

Multiphysics Simulation Methods in Computer Graphics — EG 2025, London

4 Conclusion
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End of Part | of llI

Thank youl!

Do you have any questions?

Simulated (left) vs. real excavator digging in PBD soil [Holz and Galarneau, 2018] Viscoplastic paint on cloth in XPBI [Yu et al., 2024]
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